Calcul d'indices de non-linéarité de livres-jeux
#46
Merci Smile Bon quand j'enverrai les graphes ce serait bien que les auteurs (qui pourront en faire des super posters) y jettent un coup d'oeil et vérifie qu'il est cohérent, au cas où...
[Image: litteraction5.png]Littéraction.fr
Le site de livres-jeux dont VOUS êtes l'auteur !
Répondre
#47
Bon, je suis en train de modifier les paramètres PHP de mon pc pour que mon algorithme marche même pour les monstres du genre Daleth et Nils Jacket (là, ce sera poster géant).

EDIT: le Daleth passe
Vous avez dit monstre?


Traitement des données et traduction en langage Mapple

Données valides, traduction en langage Mapple (liaisons sous forme de listes):

L[1]:=[350,755]: L[2]:=[598]: L[3]:=[106]: L[4]:=[531,652,669]: L[5]:=[696,859]: L[6]:=[260]: L[7]:=[709]: L[8]:=[199]: L[9] :=[]:L[10]:=[56,333,382,666]: L[11]:=[96,121,258,775,840]: L[12]:=[149,822]: L[13] :=[]:L[14]:=[486]: L[15]:=[335,441,888]: L[16]:=[520]: L[17]:=[410]: L[18]:=[462,711]: L[19]:=[205,482]: L[20]:=[340,419]: L[21]:=[595]: L[22]:=[708,718]: L[23]:=[175,385]: L[24]:=[14,356]: L[25]:=[463]: L[26]:=[682]: L[27]:=[33,313,457]: L[28]:=[483,616]: L[29]:=[366]: L[30]:=[228,728,856]: L[31]:=[20,496]: L[32]:=[307,414,677]: L[33] :=[]:L[34]:=[196,389]: L[35]:=[556]: L[36]:=[422]: L[37]:=[606,637,861]: L[38]:=[84]: L[39]:=[623]: L[40]:=[159,481,492]: L[41]:=[65,242]: L[42]:=[697]: L[43]:=[231]: L[44]:=[667,816]: L[45]:=[109,145]: L[46]:=[435]: L[47]:=[83,574]: L[48]:=[200,866]: L[49]:=[538]: L[50]:=[58,89]: L[51]:=[235,489,590,607]: L[52]:=[538]: L[53]:=[208,515,737]: L[54]:=[226,382,507,848]: L[55]:=[840]: L[56]:=[47]: L[57]:=[96,121,775,840]: L[58]:=[42]: L[59]:=[337]: L[60]:=[132,534,548]: L[61]:=[161,313,656]: L[62]:=[520]: L[63]:=[157]: L[64]:=[219]: L[65]:=[37,122]: L[66]:=[48,558]: L[67]:=[331,527,621,738,754]: L[68]:=[94,265]: L[69]:=[545,626]: L[70]:=[156]: L[71]:=[111,202,269,277,663]: L[72]:=[224,313,339]: L[73]:=[54,493]: L[74]:=[137,336]: L[75]:=[314,384]: L[76]:=[818]: L[77]:=[63]: L[78]:=[594,829]: L[79]:=[93]: L[80]:=[807]: L[81]:=[642,851]: L[82]:=[366]: L[83]:=[237,530,828]: L[84]:=[176,363,675]: L[85]:=[511]: L[86]:=[310]: L[87]:=[756,802]: L[88]:=[424,806]: L[89] :=[]:L[90]:=[791]: L[91]:=[466]: L[92]:=[799]: L[93]:=[15,481,587,896]: L[94]:=[751]: L[95]:=[727]: L[96]:=[524,840]: L[97]:=[410]: L[98]:=[159,481,492]: L[99]:=[26,182]: L[100]:=[183,254,766]: L[101]:=[567,686]: L[102]:=[167,862]: L[103] :=[]:L[104]:=[552]: L[105]:=[659]: L[106]:=[86,522,694]: L[107]:=[529,713]: L[108]:=[681]: L[109]:=[445,860]: L[110] :=[]:L[111]:=[682]: L[112]:=[635]: L[113]:=[654]: L[114]:=[399]: L[115]:=[669]: L[116]:=[70,706]: L[117]:=[124,226,382,848]: L[118]:=[424,806]: L[119]:=[159,481,492]: L[120]:=[450]: L[121]:=[96,775,840]: L[122]:=[606,637,861]: L[123]:=[557]: L[124]:=[30,228,392]: L[125]:=[320,800]: L[126]:=[106,540,633]: L[127]:=[275,572]: L[128]:=[39,837]: L[129]:=[123,360]: L[130]:=[439]: L[131]:=[110]: L[132]:=[90]: L[133]:=[499]: L[134]:=[155,714]: L[135]:=[244,377,444]: L[136]:=[506]: L[137]:=[402]: L[138]:=[78,437]: L[139]:=[323,575,685]: L[140]:=[359]: L[141]:=[208,515,737]: L[142] :=[]:L[143]:=[898]: L[144]:=[144]: L[145]:=[299]: L[146]:=[576,876]: L[147]:=[443]: L[148]:=[801]: L[149]:=[178,583]: L[150]:=[214]: L[151]:=[881]: L[152]:=[721,768]: L[153]:=[447,665]: L[154]:=[288,719]: L[155]:=[853]: L[156]:=[601,902]: L[157]:=[477,813]: L[158] :=[]:L[159]:=[429,605]: L[160]:=[844,879]: L[161]:=[72,313,656]: L[162]:=[589,671]: L[163]:=[514]: L[164]:=[280,291]: L[165]:=[135,640]: L[166]:=[598]: L[167]:=[525,838]: L[168]:=[369,427,642]: L[169]:=[118,361]: L[170] :=[]:L[171]:=[279]: L[172] :=[]:L[173]:=[124,226,507,848]: L[174]:=[410]: L[175] :=[]:L[176]:=[241,331,621,738,754]: L[177]:=[74,566]: L[178]:=[383,523]: L[179]:=[873]: L[180]:=[353]: L[181]:=[17,489,607]: L[182]:=[465,542]: L[183]:=[852]: L[184]:=[410]: L[185]:=[106,241,411]: L[186]:=[207]: L[187]:=[398,690]: L[188]:=[636]: L[189]:=[93]: L[190]:=[499]: L[191]:=[313]: L[192]:=[106]: L[193]:=[398,747]: L[194] :=[]:L[195]:=[551,658]: L[196]:=[310]: L[197]:=[805]: L[198]:=[159,481,492]: L[199]:=[836,910]: L[200]:=[8,788]: L[201]:=[65,249,351]: L[202]:=[99]: L[203]:=[577]: L[204]:=[10,164,177]: L[205]:=[229,262]: L[206]:=[401,709]: L[207]:=[591]: L[208]:=[22,515,737]: L[209]:=[635]: L[210]:=[375,503,897]: L[211]:=[331,527,621,738,754]: L[212]:=[905]: L[213]:=[330]: L[214]:=[28,869]: L[215]:=[96,121,775,840]: L[216] :=[]:L[217]:=[280,291,664]: L[218]:=[359]: L[219]:=[353,479,785]: L[220]:=[69,95]: L[221]:=[594,829]: L[222]:=[292,784]: L[223]:=[51,509]: L[224]:=[191,726]: L[225]:=[741,777]: L[226]:=[124,382,507,848]: L[227]:=[248,653]: L[228]:=[410]: L[229]:=[253]: L[230]:=[48,558]: L[231]:=[333,382,666,815]: L[232]:=[827]: L[233]:=[337]: L[234]:=[610]: L[235]:=[62,608]: L[236]:=[216,318]: L[237]:=[168]: L[238]:=[433]: L[239]:=[7,709]: L[240]:=[632]: L[241]:=[232,343,673,753]: L[242]:=[773]: L[243]:=[839]: L[244] :=[]:L[245]:=[43,231,424,553,806]: L[246]:=[160,817]: L[247]:=[549,629]: L[248] :=[]:L[249]:=[65,808]: L[250]:=[2,319,355]: L[251]:=[502]: L[252] :=[]:L[253]:=[32,304,611]: L[254]:=[270]: L[255]:=[68,655]: L[256]:=[469]: L[257]:=[602,830]: L[258]:=[75,215,614]: L[259]:=[279,880]: L[260]:=[21,595,878]: L[261]:=[38,850]: L[262] :=[]:L[263]:=[451,880]: L[264]:=[488,528]: L[265]:=[387,622]: L[266]:=[138,221]: L[267]:=[273,550]: L[268]:=[555]: L[269]:=[99]: L[270]:=[243]: L[271]:=[499]: L[272]:=[905]: L[273]:=[550]: L[274]:=[171]: L[275]:=[765,810,870]: L[276]:=[55,717]: L[277]:=[99]: L[278]:=[391,710]: L[279]:=[770]: L[280] :=[]:L[281] :=[]:L[282]:=[466]: L[283]:=[839]: L[284]:=[494]: L[285]:=[532,539,619]: L[286]:=[294,744,756,790]: L[287] :=[]:L[288]:=[76,719]: L[289]:=[321,347]: L[290]:=[152]: L[291]:=[74,566]: L[292]:=[276,698]: L[293]:=[770]: L[294]:=[744,756,790]: L[295]:=[285,539]: L[296]:=[564]: L[297]:=[316,582]: L[298]:=[247,874]: L[299]:=[173]: L[300]:=[730]: L[301]:=[478,899]: L[302] :=[]:L[303]:=[651,882]: L[304]:=[13]: L[305]:=[821]: L[306]:=[771,840]: L[307]:=[13]: L[308] :=[]:L[309]:=[92,840,849]: L[310]:=[131,638]: L[311]:=[480]: L[312]:=[325]: L[313]:=[15,720]: L[314]:=[96,121,775,840]: L[315]:=[676]: L[316]:=[678]: L[317]:=[407]: L[318]:=[390]: L[319]:=[130,697]: L[320] :=[]:L[321]:=[268,555,680]: L[322] :=[]:L[323]:=[370]: L[324]:=[22,208,515]: L[325]:=[163,731]: L[326]:=[342,864]: L[327]:=[71]: L[328]:=[100]: L[329]:=[23,471]: L[330]:=[213,563]: L[331]:=[416,438,565]: L[332] :=[]:L[333]:=[373,624,644]: L[334]:=[220,778]: L[335] :=[]:L[336]:=[402]: L[337]:=[49]: L[338]:=[903]: L[339]:=[224,313]: L[340]:=[226,382,507,848]: L[341]:=[89]: L[342]:=[635]: L[343]:=[106]: L[344]:=[315,625]: L[345]:=[709]: L[346]:=[905]: L[347]:=[166,504]: L[348]:=[435]: L[349]:=[77,541]: L[350]:=[649]: L[351]:=[773]: L[352]:=[106,540,633]: L[353]:=[877]: L[354]:=[61,313]: L[355]:=[89,578]: L[356]:=[109,378]: L[357]:=[93]: L[358]:=[436]: L[359]:=[410]: L[360]:=[557]: L[361] :=[]:L[362]:=[463]: L[363]:=[331,527,621,738,754]: L[364]:=[823]: L[365]:=[609]: L[366]:=[226,382,507,848]: L[367]:=[300]: L[368]:=[826,840]: L[369]:=[81,642]: L[370]:=[240]: L[371]:=[131,327]: L[372]:=[517,525]: L[373] :=[]:L[374]:=[53,141]: L[375]:=[226,382,500,507,848]: L[376]:=[17,516]: L[377]:=[476,640]: L[378] :=[]:L[379]:=[198,858]: L[380]:=[194,853]: L[381]:=[119,761]: L[382] :=[]:L[383]:=[159,481,492]: L[384]:=[914]: L[385]:=[413]: L[386] :=[]:L[387]:=[104,552]: L[388]:=[9,833]: L[389]:=[752,842]: L[390]:=[256,469,573]: L[391]:=[331,621,738,754]: L[392]:=[466]: L[393]:=[543]: L[394]:=[692]: L[395]:=[14,24]: L[396]:=[18,170,691]: L[397]:=[226,382,507,848]: L[398]:=[93]: L[399]:=[415,650,825]: L[400]:=[210]: L[401]:=[134,599,631]: L[402]:=[10,909]: L[403]:=[111,202,269,277,663]: L[404]:=[128,221]: L[405]:=[398,547]: L[406]:=[450]: L[407]:=[733]: L[408] :=[]:L[409]:=[366]: L[410]:=[400,736,745]: L[411]:=[106,241]: L[412]:=[386]: L[413]:=[159,481,492,587]: L[414]:=[32]: L[415]:=[803]: L[416]:=[67,774]: L[417]:=[197,571,900]: L[418] :=[]:L[419]:=[226,382,507,848]: L[420]:=[278,459,780]: L[421]:=[898]: L[422]:=[568]: L[423]:=[164,911]: L[424]:=[841,887]: L[425] :=[]:L[426]:=[226,382,507,848]: L[427]:=[369,642]: L[428]:=[287,312]: L[429] :=[]:L[430]:=[72,313,824]: L[431]:=[29,442]: L[432]:=[556]: L[433]:=[577]: L[434]:=[16,65,235,649]: L[435]:=[505,758]: L[436]:=[227,907]: L[437]:=[623]: L[438]:=[148,195,485]: L[439]:=[697]: L[440]:=[235,489,590,607]: L[441]:=[335,344]: L[442]:=[366]: L[443]:=[257,641]: L[444]:=[476,640]: L[445]:=[760,860]: L[446]:=[693]: L[447] :=[]:L[448]:=[490]: L[449]:=[65,249,351,688,793]: L[450] :=[]:L[451]:=[672]: L[452]:=[43,231,424,553,806]: L[453]:=[297]: L[454]:=[213,330,563]: L[455]:=[357,398]: L[456]:=[905]: L[457] :=[]:L[458]:=[152,511]: L[459]:=[195,485]: L[460]:=[146]: L[461] :=[]:L[462]:=[12]: L[463]:=[443,473]: L[464]:=[446,693,756]: L[465]:=[499]: L[466]:=[97,184]: L[467]:=[93]: L[468]:=[412,740]: L[469]:=[334]: L[470]:=[331,527,621,754]: L[471]:=[413]: L[472]:=[652,669]: L[473] :=[]:L[474]:=[886]: L[475]:=[108,681]: L[476]:=[640]: L[477]:=[592,695]: L[478]:=[898]: L[479]:=[779]: L[480]:=[380,772]: L[481]:=[159,492,587]: L[482]:=[253]: L[483]:=[899]: L[484]:=[17,365,448]: L[485]:=[391,409]: L[486]:=[24,356]: L[487]:=[613]: L[488]:=[451,880]: L[489]:=[65,351,773]: L[490]:=[410]: L[491]:=[508,715]: L[492]:=[92,309,320,840,849]: L[493]:=[226,382,507,848]: L[494]:=[25,147,362,700,767]: L[495]:=[435]: L[496]:=[73,702]: L[497]:=[709]: L[498]:=[102]: L[499]:=[22,208,515,737]: L[500]:=[31,426]: L[501]:=[102]: L[502]:=[189,251,875,895]: L[503]:=[397,562]: L[504]:=[367,730]: L[505]:=[306,840]: L[506]:=[234]: L[507]:=[5,127]: L[508]:=[286]: L[509]:=[590]: L[510]:=[181]: L[511]:=[114,399]: L[512] :=[]:L[513]:=[23,471]: L[514] :=[]:L[515]:=[295,539,742,871]: L[516]:=[490]: L[517] :=[]:L[518]:=[212,272]: L[519]:=[454,593,796]: L[520]:=[41,65,332,861,892]: L[521]:=[586,804]: L[522]:=[701,864]: L[523]:=[90]: L[524]:=[276,630,689,717]: L[525]:=[468,604]: L[526] :=[]:L[527]:=[331,527,621,738,754]: L[528]:=[105,263]: L[529]:=[609]: L[530]:=[168]: L[531]:=[652,669,906]: L[532]:=[619]: L[533] :=[]:L[534]:=[554]: L[535]:=[331,527,621,738,754]: L[536]:=[568]: L[537]:=[244,377,444]: L[538]:=[518,820,908]: L[539]:=[173]: L[540]:=[103,192]: L[541]:=[63]: L[542]:=[133,847]: L[543]:=[296,781]: L[544]:=[188]: L[545]:=[727]: L[546]:=[56,333,666,815]: L[547] :=[]:L[548]:=[159,481,492]: L[549] :=[]:L[550]:=[723]: L[551]:=[366]: L[552]:=[61,313,354]: L[553]:=[169,863]: L[554]:=[159,481,492]: L[555]:=[347]: L[556]:=[889]: L[557]:=[142,549,699]: L[558]:=[284,494]: L[559]:=[187,193,405,455,474,835]: L[560]:=[628,789]: L[561]:=[331,527,621,738,754]: L[562]:=[226,382,507,848]: L[563]:=[162,460,648]: L[564]:=[418,546]: L[565]:=[660]: L[566]:=[137,336]: L[567]:=[101,324]: L[568]:=[53,374]: L[569]:=[44,816]: L[570]:=[159,481,492]: L[571] :=[]:L[572]:=[765,810,870]: L[573]:=[256,469,684]: L[574]:=[333,382,666,815]: L[575] :=[]:L[576] :=[]:L[577]:=[461,739,854]: L[578]:=[58]: L[579]:=[501]: L[580]:=[552]: L[581]:=[110]: L[582]:=[678]: L[583]:=[90]: L[584]:=[57,96,121,775,840]: L[585]:=[223,235,489]: L[586]:=[907]: L[587]:=[266,404]: L[588]:=[50,341]: L[589]:=[460,648]: L[590]:=[4,440,652,669]: L[591]:=[302,396]: L[592]:=[154]: L[593]:=[454,519,659]: L[594]:=[891]: L[595]:=[823]: L[596]:=[179,792]: L[597]:=[17,107,376,639]: L[598]:=[305,762]: L[599]:=[401]: L[600]:=[282,904]: L[601]:=[117,646]: L[602]:=[867]: L[603]:=[398]: L[604]:=[412]: L[605]:=[113]: L[606]:=[139]: L[607]:=[223,235,489,585]: L[608]:=[489]: L[609]:=[410]: L[610] :=[]:L[611] :=[]:L[612]:=[564]: L[613]:=[267,550]: L[614]:=[96,121,584,775,840]: L[615]:=[171]: L[616]:=[899]: L[617]:=[102]: L[618]:=[49]: L[619]:=[683]: L[620]:=[297]: L[621]:=[420,535,561]: L[622]:=[552,580]: L[623]:=[556]: L[624]:=[59,233,670]: L[625]:=[317]: L[626]:=[727]: L[627] :=[]:L[628]:=[789]: L[629]:=[186,725]: L[630]:=[55]: L[631]:=[401,497]: L[632]:=[255]: L[633]:=[106,185]: L[634]:=[422]: L[635]:=[110]: L[636]:=[358]: L[637]:=[139]: L[638]:=[71]: L[639]:=[238,484]: L[640]:=[15,720]: L[641]:=[867]: L[642]:=[333,382,666,815]: L[643]:=[214,751]: L[644]:=[746]: L[645]:=[10,423,707]: L[646] :=[]:L[647]:=[64,353]: L[648]:=[165,537]: L[649]:=[351,773,808]: L[650]:=[803]: L[651]:=[910]: L[652]:=[181,845]: L[653]:=[227,907]: L[654]:=[180,647]: L[655]:=[94,265]: L[656]:=[72,313,430,824]: L[657]:=[807]: L[658] :=[]:L[659]:=[454,519]: L[660]:=[366]: L[661]:=[538]: L[662]:=[293,735]: L[663]:=[26,182]: L[664]:=[74,566]: L[665]:=[194,853]: L[666]:=[56,333,382,815]: L[667]:=[816]: L[668]:=[11]: L[669]:=[750,912]: L[670]:=[337]: L[671]:=[460,648]: L[672]:=[274,421]: L[673]:=[106]: L[674]:=[189]: L[675]:=[366]: L[676]:=[126,352]: L[677] :=[]:L[678]:=[329,513]: L[679]:=[456,787]: L[680]:=[347,588]: L[681]:=[158,393,734]: L[682]:=[22,208,515,737]: L[683]:=[544]: L[684]:=[334]: L[685]:=[370]: L[686] :=[]:L[687]:=[93]: L[688]:=[201,449]: L[689]:=[826,840]: L[690]:=[398]: L[691]:=[18,98,170]: L[692]:=[46,348,495,769,797]: L[693]:=[286,756,868]: L[694]:=[34,310]: L[695]:=[154]: L[696]:=[810,859]: L[697]:=[901]: L[698]:=[579,776,794,812]: L[699]:=[591]: L[700]:=[463]: L[701]:=[326,371]: L[702]:=[226,382,507,848]: L[703]:=[45,378]: L[704]:=[613]: L[705]:=[742]: L[706] :=[]:L[707]:=[177,217]: L[708]:=[729]: L[709]:=[134,239,246,345]: L[710]:=[459,621,754,780]: L[711]:=[12]: L[712]:=[33]: L[713]:=[203,218]: L[714]:=[853]: L[715]:=[508]: L[716]:=[235,489,590,607]: L[717]:=[368,498]: L[718]:=[729]: L[719]:=[390]: L[720]:=[315,625]: L[721]:=[349]: L[722]:=[464,491,693,756]: L[723]:=[120,406]: L[724]:=[789,811]: L[725]:=[207]: L[726]:=[27,313,712]: L[727]:=[795,819]: L[728]:=[91,228,600]: L[729]:=[487,550,704]: L[730]:=[2,250]: L[731]:=[514]: L[732]:=[559]: L[733]:=[19,262]: L[734]:=[757,798]: L[735] :=[]:L[736]:=[400]: L[737]:=[101,324,567]: L[738]:=[470,832]: L[739] :=[]:L[740]:=[412]: L[741]:=[311]: L[742]:=[295,539,619]: L[743]:=[867]: L[744]:=[790]: L[745]:=[400,736]: L[746]:=[661,831]: L[747]:=[93,512]: L[748]:=[553]: L[749]:=[214]: L[750]:=[425,489]: L[751]:=[150,264]: L[752]:=[885,913]: L[753]:=[106]: L[754]:=[420,431,535]: L[755]:=[649]: L[756]:=[124,226,382,507]: L[757] :=[]:L[758]:=[771,840]: L[759]:=[742]: L[760]:=[145,378,703,782]: L[761]:=[40,60]: L[762] :=[]:L[763] :=[]:L[764]:=[628,789]: L[765]:=[289]: L[766]:=[852]: L[767]:=[443]: L[768]:=[349]: L[769]:=[435]: L[770]:=[454,519,593]: L[771]:=[222,292,840]: L[772] :=[]:L[773]:=[65,249,351,449,793]: L[774]:=[211,278,459]: L[775]:=[96,121,258,840]: L[776]:=[569]: L[777]:=[206]: L[778]:=[220]: L[779] :=[]:L[780]:=[67,774]: L[781]:=[296,612]: L[782] :=[]:L[783]:=[190]: L[784]:=[292]: L[785]:=[353,479]: L[786] :=[]:L[787]:=[905]: L[788]:=[855,893]: L[789]:=[361,452]: L[790]:=[475]: L[791]:=[159,481,492]: L[792]:=[873]: L[793]:=[65,249,351,449]: L[794]:=[136]: L[795]:=[66,230,322]: L[796]:=[454]: L[797]:=[435]: L[798]:=[543]: L[799]:=[11,834,840]: L[800]:=[502,559,732]: L[801]:=[331,527,621,754]: L[802]:=[87,286,756]: L[803]:=[818]: L[804]:=[395,586]: L[805]:=[424,553]: L[806]:=[417]: L[807]:=[617]: L[808]:=[65,223,434,607,649]: L[809]:=[260]: L[810]:=[124,226,848]: L[811]:=[361,452]: L[812]:=[80,657]: L[813]:=[216,236,890]: L[814]:=[342,701,865]: L[815]:=[204,645]: L[816]:=[102]: L[817]:=[153,763]: L[818]:=[256,469,573]: L[819]:=[48,558]: L[820]:=[905]: L[821]:=[355,697]: L[822]:=[151,178]: L[823]:=[15,720]: L[824]:=[72,313]: L[825]:=[818]: L[826] :=[]:L[827]:=[106]: L[828]:=[168]: L[829]:=[891]: L[830]:=[308,743]: L[831]:=[52,618]: L[832]:=[331,527,621,754]: L[833]:=[71]: L[834]:=[394,668]: L[835]:=[398,603]: L[836]:=[303,910]: L[837]:=[556]: L[838]:=[372]: L[839]:=[152,290,458,511]: L[840]:=[125,159,481,587,627]: L[841] :=[]:L[842]:=[209,752]: L[843] :=[]:L[844]:=[447,665]: L[845]:=[181,510]: L[846]:=[335,344]: L[847]:=[271,783]: L[848]:=[491,722,756]: L[849]:=[92,309,840]: L[850]:=[84]: L[851]:=[560,724,764]: L[852]:=[270]: L[853]:=[915,916,917]: L[854] :=[]:L[855]:=[199]: L[856]:=[466]: L[857]:=[536,634]: L[858]:=[159,481,492]: L[859]:=[526,843]: L[860]:=[760]: L[861] :=[]:L[862]:=[167]: L[863]:=[88,361]: L[864]:=[403,814]: L[865]:=[388,581]: L[866]:=[199]: L[867]:=[596]: L[868]:=[87,286,802]: L[869]:=[143,301]: L[870]:=[765]: L[871]:=[705,759]: L[872]:=[509,716]: L[873]:=[36,857]: L[874]:=[123,360]: L[875]:=[502]: L[876] :=[]:L[877]:=[225,741,777]: L[878]:=[364,595]: L[879] :=[]:L[880]:=[662,749]: L[881]:=[119,761]: L[882]:=[910]: L[883]:=[2,319,355]: L[884]:=[428,533]: L[885]:=[842]: L[886]:=[467,687]: L[887]:=[361,748]: L[888]:=[344]: L[889]:=[129,298]: L[890]:=[318]: L[891]:=[35,432]: L[892] :=[]:L[893]:=[199]: L[894]:=[17,597]: L[895]:=[674]: L[896]:=[93,786]: L[897]:=[226,382,500,507,848]: L[898]:=[6,408]: L[899]:=[615]: L[900]:=[424,553]: L[901]:=[116]: L[902]:=[117,646]: L[903]:=[259,751]: L[904]:=[91,174,228,894]: L[905]:=[56,382,666,815]: L[906]:=[115,252,472]: L[907]:=[395,521]: L[908]:=[346,679]: L[909]:=[453,620]: L[910]:=[596]: L[911]:=[74,566]: L[912]:=[440]: L[913]:=[112,842]: L[914]:=[840]: L[915] :=[]:L[916] :=[]:L[917] :=[]:


Code du graphe :

digraph GRAPHE {

node [dir=forward style=filled fillcolor=darkolivegreen3 color=white fontcolor=white]1[fillcolor=yellow color=navy fontcolor=teal]; 2; 3; 4; 5; 6; 7; 8; 9[fillcolor=red2 color=navy fontcolor=teal]; 10; 11; 12; 13[fillcolor=red2 color=navy fontcolor=teal]; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33[fillcolor=red2 color=navy fontcolor=teal]; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53; 54; 55; 56; 57; 58; 59; 60; 61; 62; 63; 64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78; 79; 80; 81; 82; 83; 84; 85; 86; 87; 88; 89[fillcolor=red2 color=navy fontcolor=teal]; 90; 91; 92; 93; 94; 95; 96; 97; 98; 99; 100; 101; 102; 103[fillcolor=red2 color=navy fontcolor=teal]; 104; 105; 106; 107; 108; 109; 110[fillcolor=red2 color=navy fontcolor=teal]; 111; 112; 113; 114; 115; 116; 117; 118; 119; 120; 121; 122; 123; 124; 125; 126; 127; 128; 129; 130; 131; 132; 133; 134; 135; 136; 137; 138; 139; 140; 141; 142[fillcolor=red2 color=navy fontcolor=teal]; 143; 144; 145; 146; 147; 148; 149; 150; 151; 152; 153; 154; 155; 156; 157; 158[fillcolor=red2 color=navy fontcolor=teal]; 159; 160; 161; 162; 163; 164; 165; 166; 167; 168; 169; 170[fillcolor=red2 color=navy fontcolor=teal]; 171; 172[fillcolor=red2 color=navy fontcolor=teal]; 173; 174; 175[fillcolor=red2 color=navy fontcolor=teal]; 176; 177; 178; 179; 180; 181; 182; 183; 184; 185; 186; 187; 188; 189; 190; 191; 192; 193; 194[fillcolor=red2 color=navy fontcolor=teal]; 195; 196; 197; 198; 199; 200; 201; 202; 203; 204; 205; 206; 207; 208; 209; 210; 211; 212; 213; 214; 215; 216[fillcolor=red2 color=navy fontcolor=teal]; 217; 218; 219; 220; 221; 222; 223; 224; 225; 226; 227; 228; 229; 230; 231; 232; 233; 234; 235; 236; 237; 238; 239; 240; 241; 242; 243; 244[fillcolor=red2 color=navy fontcolor=teal]; 245; 246; 247; 248[fillcolor=red2 color=navy fontcolor=teal]; 249; 250; 251; 252[fillcolor=red2 color=navy fontcolor=teal]; 253; 254; 255; 256; 257; 258; 259; 260; 261; 262[fillcolor=red2 color=navy fontcolor=teal]; 263; 264; 265; 266; 267; 268; 269; 270; 271; 272; 273; 274; 275; 276; 277; 278; 279; 280[fillcolor=red2 color=navy fontcolor=teal]; 281[fillcolor=red2 color=navy fontcolor=teal]; 282; 283; 284; 285; 286; 287[fillcolor=red2 color=navy fontcolor=teal]; 288; 289; 290; 291; 292; 293; 294; 295; 296; 297; 298; 299; 300; 301; 302[fillcolor=red2 color=navy fontcolor=teal]; 303; 304; 305; 306; 307; 308[fillcolor=red2 color=navy fontcolor=teal]; 309; 310; 311; 312; 313; 314; 315; 316; 317; 318; 319; 320[fillcolor=red2 color=navy fontcolor=teal]; 321; 322[fillcolor=red2 color=navy fontcolor=teal]; 323; 324; 325; 326; 327; 328; 329; 330; 331; 332[fillcolor=red2 color=navy fontcolor=teal]; 333; 334; 335[fillcolor=red2 color=navy fontcolor=teal]; 336; 337; 338; 339; 340; 341; 342; 343; 344; 345; 346; 347; 348; 349; 350; 351; 352; 353; 354; 355; 356; 357; 358; 359; 360; 361[fillcolor=red2 color=navy fontcolor=teal]; 362; 363; 364; 365; 366; 367; 368; 369; 370; 371; 372; 373[fillcolor=red2 color=navy fontcolor=teal]; 374; 375; 376; 377; 378[fillcolor=red2 color=navy fontcolor=teal]; 379; 380; 381; 382[fillcolor=red2 color=navy fontcolor=teal]; 383; 384; 385; 386[fillcolor=red2 color=navy fontcolor=teal]; 387; 388; 389; 390; 391; 392; 393; 394; 395; 396; 397; 398; 399; 400; 401; 402; 403; 404; 405; 406; 407; 408[fillcolor=red2 color=navy fontcolor=teal]; 409; 410; 411; 412; 413; 414; 415; 416; 417; 418[fillcolor=red2 color=navy fontcolor=teal]; 419; 420; 421; 422; 423; 424; 425[fillcolor=red2 color=navy fontcolor=teal]; 426; 427; 428; 429[fillcolor=red2 color=navy fontcolor=teal]; 430; 431; 432; 433; 434; 435; 436; 437; 438; 439; 440; 441; 442; 443; 444; 445; 446; 447[fillcolor=red2 color=navy fontcolor=teal]; 448; 449; 450[fillcolor=red2 color=navy fontcolor=teal]; 451; 452; 453; 454; 455; 456; 457[fillcolor=red2 color=navy fontcolor=teal]; 458; 459; 460; 461[fillcolor=red2 color=navy fontcolor=teal]; 462; 463; 464; 465; 466; 467; 468; 469; 470; 471; 472; 473[fillcolor=red2 color=navy fontcolor=teal]; 474; 475; 476; 477; 478; 479; 480; 481; 482; 483; 484; 485; 486; 487; 488; 489; 490; 491; 492; 493; 494; 495; 496; 497; 498; 499; 500; 501; 502; 503; 504; 505; 506; 507; 508; 509; 510; 511; 512[fillcolor=red2 color=navy fontcolor=teal]; 513; 514[fillcolor=red2 color=navy fontcolor=teal]; 515; 516; 517[fillcolor=red2 color=navy fontcolor=teal]; 518; 519; 520; 521; 522; 523; 524; 525; 526[fillcolor=red2 color=navy fontcolor=teal]; 527; 528; 529; 530; 531; 532; 533[fillcolor=red2 color=navy fontcolor=teal]; 534; 535; 536; 537; 538; 539; 540; 541; 542; 543; 544; 545; 546; 547[fillcolor=red2 color=navy fontcolor=teal]; 548; 549[fillcolor=red2 color=navy fontcolor=teal]; 550; 551; 552; 553; 554; 555; 556; 557; 558; 559; 560; 561; 562; 563; 564; 565; 566; 567; 568; 569; 570; 571[fillcolor=red2 color=navy fontcolor=teal]; 572; 573; 574; 575[fillcolor=red2 color=navy fontcolor=teal]; 576[fillcolor=red2 color=navy fontcolor=teal]; 577; 578; 579; 580; 581; 582; 583; 584; 585; 586; 587; 588; 589; 590; 591; 592; 593; 594; 595; 596; 597; 598; 599; 600; 601; 602; 603; 604; 605; 606; 607; 608; 609; 610[fillcolor=red2 color=navy fontcolor=teal]; 611[fillcolor=red2 color=navy fontcolor=teal]; 612; 613; 614; 615; 616; 617; 618; 619; 620; 621; 622; 623; 624; 625; 626; 627[fillcolor=red2 color=navy fontcolor=teal]; 628; 629; 630; 631; 632; 633; 634; 635; 636; 637; 638; 639; 640; 641; 642; 643; 644; 645; 646[fillcolor=red2 color=navy fontcolor=teal]; 647; 648; 649; 650; 651; 652; 653; 654; 655; 656; 657; 658[fillcolor=red2 color=navy fontcolor=teal]; 659; 660; 661; 662; 663; 664; 665; 666; 667; 668; 669; 670; 671; 672; 673; 674; 675; 676; 677[fillcolor=red2 color=navy fontcolor=teal]; 678; 679; 680; 681; 682; 683; 684; 685; 686[fillcolor=red2 color=navy fontcolor=teal]; 687; 688; 689; 690; 691; 692; 693; 694; 695; 696; 697; 698; 699; 700; 701; 702; 703; 704; 705; 706[fillcolor=red2 color=navy fontcolor=teal]; 707; 708; 709; 710; 711; 712; 713; 714; 715; 716; 717; 718; 719; 720; 721; 722; 723; 724; 725; 726; 727; 728; 729; 730; 731; 732; 733; 734; 735[fillcolor=red2 color=navy fontcolor=teal]; 736; 737; 738; 739[fillcolor=red2 color=navy fontcolor=teal]; 740; 741; 742; 743; 744; 745; 746; 747; 748; 749; 750; 751; 752; 753; 754; 755; 756; 757[fillcolor=red2 color=navy fontcolor=teal]; 758; 759; 760; 761; 762[fillcolor=red2 color=navy fontcolor=teal]; 763[fillcolor=red2 color=navy fontcolor=teal]; 764; 765; 766; 767; 768; 769; 770; 771; 772[fillcolor=red2 color=navy fontcolor=teal]; 773; 774; 775; 776; 777; 778; 779[fillcolor=red2 color=navy fontcolor=teal]; 780; 781; 782[fillcolor=red2 color=navy fontcolor=teal]; 783; 784; 785; 786[fillcolor=red2 color=navy fontcolor=teal]; 787; 788; 789; 790; 791; 792; 793; 794; 795; 796; 797; 798; 799; 800; 801; 802; 803; 804; 805; 806; 807; 808; 809; 810; 811; 812; 813; 814; 815; 816; 817; 818; 819; 820; 821; 822; 823; 824; 825; 826[fillcolor=red2 color=navy fontcolor=teal]; 827; 828; 829; 830; 831; 832; 833; 834; 835; 836; 837; 838; 839; 840; 841[fillcolor=red2 color=navy fontcolor=teal]; 842; 843[fillcolor=red2 color=navy fontcolor=teal]; 844; 845; 846; 847; 848; 849; 850; 851; 852; 853; 854[fillcolor=red2 color=navy fontcolor=teal]; 855; 856; 857; 858; 859; 860; 861[fillcolor=red2 color=navy fontcolor=teal]; 862; 863; 864; 865; 866; 867; 868; 869; 870; 871; 872; 873; 874; 875; 876[fillcolor=red2 color=navy fontcolor=teal]; 877; 878; 879[fillcolor=red2 color=navy fontcolor=teal]; 880; 881; 882; 883; 884; 885; 886; 887; 888; 889; 890; 891; 892[fillcolor=red2 color=navy fontcolor=teal]; 893; 894; 895; 896; 897; 898; 899; 900; 901; 902; 903; 904; 905; 906; 907; 908; 909; 910; 911; 912; 913; 914; 915[fillcolor=red2 color=navy fontcolor=teal]; 916[fillcolor=red2 color=navy fontcolor=teal]; 917[fillcolor=red2 color=navy fontcolor=teal];
1->{350,755}; 2->{598};3->{106};4->{531,652,669}; 5->{696,859}; 6->{260};7->{709};8->{199};10->{56,333,382,666}; 11->{96,121,258,775,840}; 12->{149,822}; 14->{486};15->{335,441,888}; 16->{520};17->{410};18->{462,711}; 19->{205,482}; 20->{340,419}; 21->{595};22->{708,718}; 23->{175,385}; 24->{14,356}; 25->{463};26->{682};27->{33,313,457}; 28->{483,616}; 29->{366};30->{228,728,856}; 31->{20,496}; 32->{307,414,677}; 34->{196,389}; 35->{556};36->{422};37->{606,637,861}; 38->{84};39->{623};40->{159,481,492}; 41->{65,242}; 42->{697};43->{231};44->{667,816}; 45->{109,145}; 46->{435};47->{83,574}; 48->{200,866}; 49->{538};50->{58,89}; 51->{235,489,590,607}; 52->{538};53->{208,515,737}; 54->{226,382,507,848}; 55->{840};56->{47};57->{96,121,775,840}; 58->{42};59->{337};60->{132,534,548}; 61->{161,313,656}; 62->{520};63->{157};64->{219};65->{37,122}; 66->{48,558}; 67->{331,527,621,738,754}; 68->{94,265}; 69->{545,626}; 70->{156};71->{111,202,269,277,663}; 72->{224,313,339}; 73->{54,493}; 74->{137,336}; 75->{314,384}; 76->{818};77->{63};78->{594,829}; 79->{93};80->{807};81->{642,851}; 82->{366};83->{237,530,828}; 84->{176,363,675}; 85->{511};86->{310};87->{756,802}; 88->{424,806}; 90->{791};91->{466};92->{799};93->{15,481,587,896}; 94->{751};95->{727};96->{524,840}; 97->{410};98->{159,481,492}; 99->{26,182}; 100->{183,254,766}; 101->{567,686}; 102->{167,862}; 104->{552};105->{659};106->{86,522,694}; 107->{529,713}; 108->{681};109->{445,860}; 111->{682};112->{635};113->{654};114->{399};115->{669};116->{70,706}; 117->{124,226,382,848}; 118->{424,806}; 119->{159,481,492}; 120->{450};121->{96,775,840}; 122->{606,637,861}; 123->{557};124->{30,228,392}; 125->{320,800}; 126->{106,540,633}; 127->{275,572}; 128->{39,837}; 129->{123,360}; 130->{439};131->{110};132->{90};133->{499};134->{155,714}; 135->{244,377,444}; 136->{506};137->{402};138->{78,437}; 139->{323,575,685}; 140->{359};141->{208,515,737}; 143->{898};144->{144};145->{299};146->{576,876}; 147->{443};148->{801};149->{178,583}; 150->{214};151->{881};152->{721,768}; 153->{447,665}; 154->{288,719}; 155->{853};156->{601,902}; 157->{477,813}; 159->{429,605}; 160->{844,879}; 161->{72,313,656}; 162->{589,671}; 163->{514};164->{280,291}; 165->{135,640}; 166->{598};167->{525,838}; 168->{369,427,642}; 169->{118,361}; 171->{279};173->{124,226,507,848}; 174->{410};176->{241,331,621,738,754}; 177->{74,566}; 178->{383,523}; 179->{873};180->{353};181->{17,489,607}; 182->{465,542}; 183->{852};184->{410};185->{106,241,411}; 186->{207};187->{398,690}; 188->{636};189->{93};190->{499};191->{313};192->{106};193->{398,747}; 195->{551,658}; 196->{310};197->{805};198->{159,481,492}; 199->{836,910}; 200->{8,788}; 201->{65,249,351}; 202->{99};203->{577};204->{10,164,177}; 205->{229,262}; 206->{401,709}; 207->{591};208->{22,515,737}; 209->{635};210->{375,503,897}; 211->{331,527,621,738,754}; 212->{905};213->{330};214->{28,869}; 215->{96,121,775,840}; 217->{280,291,664}; 218->{359};219->{353,479,785}; 220->{69,95}; 221->{594,829}; 222->{292,784}; 223->{51,509}; 224->{191,726}; 225->{741,777}; 226->{124,382,507,848}; 227->{248,653}; 228->{410};229->{253};230->{48,558}; 231->{333,382,666,815}; 232->{827};233->{337};234->{610};235->{62,608}; 236->{216,318}; 237->{168};238->{433};239->{7,709}; 240->{632};241->{232,343,673,753}; 242->{773};243->{839};245->{43,231,424,553,806}; 246->{160,817}; 247->{549,629}; 249->{65,808}; 250->{2,319,355}; 251->{502};253->{32,304,611}; 254->{270};255->{68,655}; 256->{469};257->{602,830}; 258->{75,215,614}; 259->{279,880}; 260->{21,595,878}; 261->{38,850}; 263->{451,880}; 264->{488,528}; 265->{387,622}; 266->{138,221}; 267->{273,550}; 268->{555};269->{99};270->{243};271->{499};272->{905};273->{550};274->{171};275->{765,810,870}; 276->{55,717}; 277->{99};278->{391,710}; 279->{770};282->{466};283->{839};284->{494};285->{532,539,619}; 286->{294,744,756,790}; 288->{76,719}; 289->{321,347}; 290->{152};291->{74,566}; 292->{276,698}; 293->{770};294->{744,756,790}; 295->{285,539}; 296->{564};297->{316,582}; 298->{247,874}; 299->{173};300->{730};301->{478,899}; 303->{651,882}; 304->{13};305->{821};306->{771,840}; 307->{13};309->{92,840,849}; 310->{131,638}; 311->{480};312->{325};313->{15,720}; 314->{96,121,775,840}; 315->{676};316->{678};317->{407};318->{390};319->{130,697}; 321->{268,555,680}; 323->{370};324->{22,208,515}; 325->{163,731}; 326->{342,864}; 327->{71};328->{100};329->{23,471}; 330->{213,563}; 331->{416,438,565}; 333->{373,624,644}; 334->{220,778}; 336->{402};337->{49};338->{903};339->{224,313}; 340->{226,382,507,848}; 341->{89};342->{635};343->{106};344->{315,625}; 345->{709};346->{905};347->{166,504}; 348->{435};349->{77,541}; 350->{649};351->{773};352->{106,540,633}; 353->{877};354->{61,313}; 355->{89,578}; 356->{109,378}; 357->{93};358->{436};359->{410};360->{557};362->{463};363->{331,527,621,738,754}; 364->{823};365->{609};366->{226,382,507,848}; 367->{300};368->{826,840}; 369->{81,642}; 370->{240};371->{131,327}; 372->{517,525}; 374->{53,141}; 375->{226,382,500,507,848}; 376->{17,516}; 377->{476,640}; 379->{198,858}; 380->{194,853}; 381->{119,761}; 383->{159,481,492}; 384->{914};385->{413};387->{104,552}; 388->{9,833}; 389->{752,842}; 390->{256,469,573}; 391->{331,621,738,754}; 392->{466};393->{543};394->{692};395->{14,24}; 396->{18,170,691}; 397->{226,382,507,848}; 398->{93};399->{415,650,825}; 400->{210};401->{134,599,631}; 402->{10,909}; 403->{111,202,269,277,663}; 404->{128,221}; 405->{398,547}; 406->{450};407->{733};409->{366};410->{400,736,745}; 411->{106,241}; 412->{386};413->{159,481,492,587}; 414->{32};415->{803};416->{67,774}; 417->{197,571,900}; 419->{226,382,507,848}; 420->{278,459,780}; 421->{898};422->{568};423->{164,911}; 424->{841,887}; 426->{226,382,507,848}; 427->{369,642}; 428->{287,312}; 430->{72,313,824}; 431->{29,442}; 432->{556};433->{577};434->{16,65,235,649}; 435->{505,758}; 436->{227,907}; 437->{623};438->{148,195,485}; 439->{697};440->{235,489,590,607}; 441->{335,344}; 442->{366};443->{257,641}; 444->{476,640}; 445->{760,860}; 446->{693};448->{490};449->{65,249,351,688,793}; 451->{672};452->{43,231,424,553,806}; 453->{297};454->{213,330,563}; 455->{357,398}; 456->{905};458->{152,511}; 459->{195,485}; 460->{146};462->{12};463->{443,473}; 464->{446,693,756}; 465->{499};466->{97,184}; 467->{93};468->{412,740}; 469->{334};470->{331,527,621,754}; 471->{413};472->{652,669}; 474->{886};475->{108,681}; 476->{640};477->{592,695}; 478->{898};479->{779};480->{380,772}; 481->{159,492,587}; 482->{253};483->{899};484->{17,365,448}; 485->{391,409}; 486->{24,356}; 487->{613};488->{451,880}; 489->{65,351,773}; 490->{410};491->{508,715}; 492->{92,309,320,840,849}; 493->{226,382,507,848}; 494->{25,147,362,700,767}; 495->{435};496->{73,702}; 497->{709};498->{102};499->{22,208,515,737}; 500->{31,426}; 501->{102};502->{189,251,875,895}; 503->{397,562}; 504->{367,730}; 505->{306,840}; 506->{234};507->{5,127}; 508->{286};509->{590};510->{181};511->{114,399}; 513->{23,471}; 515->{295,539,742,871}; 516->{490};518->{212,272}; 519->{454,593,796}; 520->{41,65,332,861,892}; 521->{586,804}; 522->{701,864}; 523->{90};524->{276,630,689,717}; 525->{468,604}; 527->{331,527,621,738,754}; 528->{105,263}; 529->{609};530->{168};531->{652,669,906}; 532->{619};534->{554};535->{331,527,621,738,754}; 536->{568};537->{244,377,444}; 538->{518,820,908}; 539->{173};540->{103,192}; 541->{63};542->{133,847}; 543->{296,781}; 544->{188};545->{727};546->{56,333,666,815}; 548->{159,481,492}; 550->{723};551->{366};552->{61,313,354}; 553->{169,863}; 554->{159,481,492}; 555->{347};556->{889};557->{142,549,699}; 558->{284,494}; 559->{187,193,405,455,474,835}; 560->{628,789}; 561->{331,527,621,738,754}; 562->{226,382,507,848}; 563->{162,460,648}; 564->{418,546}; 565->{660};566->{137,336}; 567->{101,324}; 568->{53,374}; 569->{44,816}; 570->{159,481,492}; 572->{765,810,870}; 573->{256,469,684}; 574->{333,382,666,815}; 577->{461,739,854}; 578->{58};579->{501};580->{552};581->{110};582->{678};583->{90};584->{57,96,121,775,840}; 585->{223,235,489}; 586->{907};587->{266,404}; 588->{50,341}; 589->{460,648}; 590->{4,440,652,669}; 591->{302,396}; 592->{154};593->{454,519,659}; 594->{891};595->{823};596->{179,792}; 597->{17,107,376,639}; 598->{305,762}; 599->{401};600->{282,904}; 601->{117,646}; 602->{867};603->{398};604->{412};605->{113};606->{139};607->{223,235,489,585}; 608->{489};609->{410};612->{564};613->{267,550}; 614->{96,121,584,775,840}; 615->{171};616->{899};617->{102};618->{49};619->{683};620->{297};621->{420,535,561}; 622->{552,580}; 623->{556};624->{59,233,670}; 625->{317};626->{727};628->{789};629->{186,725}; 630->{55};631->{401,497}; 632->{255};633->{106,185}; 634->{422};635->{110};636->{358};637->{139};638->{71};639->{238,484}; 640->{15,720}; 641->{867};642->{333,382,666,815}; 643->{214,751}; 644->{746};645->{10,423,707}; 647->{64,353}; 648->{165,537}; 649->{351,773,808}; 650->{803};651->{910};652->{181,845}; 653->{227,907}; 654->{180,647}; 655->{94,265}; 656->{72,313,430,824}; 657->{807};659->{454,519}; 660->{366};661->{538};662->{293,735}; 663->{26,182}; 664->{74,566}; 665->{194,853}; 666->{56,333,382,815}; 667->{816};668->{11};669->{750,912}; 670->{337};671->{460,648}; 672->{274,421}; 673->{106};674->{189};675->{366};676->{126,352}; 678->{329,513}; 679->{456,787}; 680->{347,588}; 681->{158,393,734}; 682->{22,208,515,737}; 683->{544};684->{334};685->{370};687->{93};688->{201,449}; 689->{826,840}; 690->{398};691->{18,98,170}; 692->{46,348,495,769,797}; 693->{286,756,868}; 694->{34,310}; 695->{154};696->{810,859}; 697->{901};698->{579,776,794,812}; 699->{591};700->{463};701->{326,371}; 702->{226,382,507,848}; 703->{45,378}; 704->{613};705->{742};707->{177,217}; 708->{729};709->{134,239,246,345}; 710->{459,621,754,780}; 711->{12};712->{33};713->{203,218}; 714->{853};715->{508};716->{235,489,590,607}; 717->{368,498}; 718->{729};719->{390};720->{315,625}; 721->{349};722->{464,491,693,756}; 723->{120,406}; 724->{789,811}; 725->{207};726->{27,313,712}; 727->{795,819}; 728->{91,228,600}; 729->{487,550,704}; 730->{2,250}; 731->{514};732->{559};733->{19,262}; 734->{757,798}; 736->{400};737->{101,324,567}; 738->{470,832}; 740->{412};741->{311};742->{295,539,619}; 743->{867};744->{790};745->{400,736}; 746->{661,831}; 747->{93,512}; 748->{553};749->{214};750->{425,489}; 751->{150,264}; 752->{885,913}; 753->{106};754->{420,431,535}; 755->{649};756->{124,226,382,507}; 758->{771,840}; 759->{742};760->{145,378,703,782}; 761->{40,60}; 764->{628,789}; 765->{289};766->{852};767->{443};768->{349};769->{435};770->{454,519,593}; 771->{222,292,840}; 773->{65,249,351,449,793}; 774->{211,278,459}; 775->{96,121,258,840}; 776->{569};777->{206};778->{220};780->{67,774}; 781->{296,612}; 783->{190};784->{292};785->{353,479}; 787->{905};788->{855,893}; 789->{361,452}; 790->{475};791->{159,481,492}; 792->{873};793->{65,249,351,449}; 794->{136};795->{66,230,322}; 796->{454};797->{435};798->{543};799->{11,834,840}; 800->{502,559,732}; 801->{331,527,621,754}; 802->{87,286,756}; 803->{818};804->{395,586}; 805->{424,553}; 806->{417};807->{617};808->{65,223,434,607,649}; 809->{260};810->{124,226,848}; 811->{361,452}; 812->{80,657}; 813->{216,236,890}; 814->{342,701,865}; 815->{204,645}; 816->{102};817->{153,763}; 818->{256,469,573}; 819->{48,558}; 820->{905};821->{355,697}; 822->{151,178}; 823->{15,720}; 824->{72,313}; 825->{818};827->{106};828->{168};829->{891};830->{308,743}; 831->{52,618}; 832->{331,527,621,754}; 833->{71};834->{394,668}; 835->{398,603}; 836->{303,910}; 837->{556};838->{372};839->{152,290,458,511}; 840->{125,159,481,587,627}; 842->{209,752}; 844->{447,665}; 845->{181,510}; 846->{335,344}; 847->{271,783}; 848->{491,722,756}; 849->{92,309,840}; 850->{84};851->{560,724,764}; 852->{270};853->{915,916,917}; 855->{199};856->{466};857->{536,634}; 858->{159,481,492}; 859->{526,843}; 860->{760};862->{167};863->{88,361}; 864->{403,814}; 865->{388,581}; 866->{199};867->{596};868->{87,286,802}; 869->{143,301}; 870->{765};871->{705,759}; 872->{509,716}; 873->{36,857}; 874->{123,360}; 875->{502};877->{225,741,777}; 878->{364,595}; 880->{662,749}; 881->{119,761}; 882->{910};883->{2,319,355}; 884->{428,533}; 885->{842};886->{467,687}; 887->{361,748}; 888->{344};889->{129,298}; 890->{318};891->{35,432}; 893->{199};894->{17,597}; 895->{674};896->{93,786}; 897->{226,382,500,507,848}; 898->{6,408}; 899->{615};900->{424,553}; 901->{116};902->{117,646}; 903->{259,751}; 904->{91,174,228,894}; 905->{56,382,666,815}; 906->{115,252,472}; 907->{395,521}; 908->{346,679}; 909->{453,620}; 910->{596};911->{74,566}; 912->{440};913->{112,842}; 914->{840};}
[Image: litteraction5.png]Littéraction.fr
Le site de livres-jeux dont VOUS êtes l'auteur !
Répondre
#48
Faudrait voir avec le Marais II, c'est plus folklo pour les liens Lool
сыграем !
Répondre
#49
Alendir> Loin de moi l'idée de paraître bête, mais on est censé voir quoi?
Répondre
#50
(03/03/2010, 10:02)Jin a écrit : Alendir> Loin de moi l'idée de paraître bête, mais on est censé voir quoi?
Il faut y voir un élan... Lool
сыграем !
Répondre
#51
Le code avec les listes L:=[quelquechose] est utile pour récupérer les données (les liaisons de chaque paragraphe) pour le logiciel mapple.
Le code du graphe permet de tracer le graphe de l'aventure (enfin il y a même plusieurs types de graphe). Pour voir des exemples de tels graphes, cf une ou deux pages avant. Sinon, voici quelques graphes de ton AVH:

   

   

Le plus beau: http://www.imagup.com/pics/1267679259.html
[Image: litteraction5.png]Littéraction.fr
Le site de livres-jeux dont VOUS êtes l'auteur !
Répondre
#52
J'aurai assez peu de temps devant moi les prochaines semaines mais je pense que mi-avril, je vous ferai en rapport sur ce TIPE... Qui n'est pas terminé, en fait.
J'ai essayé de calculer les indices de Jehan, qui définissaient bien la linéarité, mais calculer les chemins possibles d'un graphe de 200 points ou plus, c'est trop long pour l'ordinateur, je pense. Je n'ai pas pu le vérifier parce que mon algorithme ne fonctionne pas mais bon (d'ailleurs Skarn toi qui t'y connais en mapple je t'envoie l'algo avec plaisir si tu veux me corriger -NON, PAS DE CETTE FACON-LA ! Crybaby )...

Donc si vous avez des idées d'indices simples à calculer (j'obtiens facilement le nombre total de liaisons, le nombre de liaisons par §, le nombre de PFA et leur pourcentage dans l'oeuvre totale par ex), allez-y. J'ai créé un petit algorithme qui permet de trouver automatiquement un chemin qui part de la fin pour voir combien il contient de paragraphes, mais il ne marche pas à tous les coups et ça n'est pas très précis.
[Image: litteraction5.png]Littéraction.fr
Le site de livres-jeux dont VOUS êtes l'auteur !
Répondre
#53
(03/03/2010, 16:53)Alendir a écrit : Le code avec les listes L:=[quelquechose] est utile pour récupérer les données (les liaisons de chaque paragraphe) pour le logiciel mapple.
Le code du graphe permet de tracer le graphe de l'aventure (enfin il y a même plusieurs types de graphe). Pour voir des exemples de tels graphes, cf une ou deux pages avant. Sinon, voici quelques graphes de ton AVH:





Le plus beau: http://www.imagup.com/pics/1267679259.html

Hou, c'est zoli le premier, ça fait comme une étoile Mrgreen
Mais je dois dire que c'est impressionnant.
Alendir> Merci d'avoir pris le temps de faire ça, c'est sympa de ta part Wink
A l'occas', si tu peux faire la même chose pour OS-3, ce serait sympa, car c'est mon AVH la moins linéaire que j'ai faite.
Répondre
#54
(03/03/2010, 23:44)Jin a écrit : [quote='Alendir' pid='20038' dateline='1267631618']
Le plus beau: http://www.imagup.com/pics/1267679259.html

Waouh !
Au petit matin, le dernier des deux fois nés était deux fois mort...
Répondre
#55
Bon, avec l'aide d'un ami (à qui j'ai fait le brouillon d'une dissert en échange ^^) j'ai réussi mon algo de calcul de tous les chemins possibles. Il marche bien pour mon AVH de 12§, il foire déjà avec Brossard, qui est pourtant linéaire, donc pas beaucoup de chemins possibles. Enfin je m'y attendais, il faut que je trouve d'autres moyens pour caractériser la linéarité. Les graphes, déjà. Mais j'aimerais bien pouvoir calculer des trucs.
[Image: litteraction5.png]Littéraction.fr
Le site de livres-jeux dont VOUS êtes l'auteur !
Répondre
#56
Je ne sais plus si quelqu'un a proposé ce type d'indice mais voilà mon idée sur la linéarité: pour chaque §, déterminer la probabilité de passer dessus lors d'une lecture (ça me paraît difficile et fastidieux mais bon). Faire la moyenne de ce résultat sur l'ensemble des §. Plus le résultat est faible, moins l'AVH est linéaire.

EDIT: j'ai l'impression que ça ressemble vaguement à la méthode de Jehan.
Répondre
#57
Oui, c'est la même chose, et trop dur à calculer. Bon, je pense que le nombre de liaisons par paragraphe est important (plus il y en a, plus l'aventure a des chances d'être linéaire). En calculant aussi l'écart type (s'il est grand, rien ne garantit que les paragraphes soient tous liés entre eux, seuls certains paragraphes peuvent contenir beaucoup de liaisons, comme dans Aliens) on peut avoir une petite idée. Par ailleurs, je pense réutiliser mon algo qui trouve tous les chemins possibles pour en trouver seulement certains, et voire la longueur moyenne des chemins qui mènent à la victoire. Plus cette longueur est importante, plus l'AVH est linéaire.
[Image: litteraction5.png]Littéraction.fr
Le site de livres-jeux dont VOUS êtes l'auteur !
Répondre
#58
Bonne nouvelle, j’ai réussi à trouver un moyen pour appliquer les indices de Jehan. En fait, j’utiliserai les nœuds des AVH pour rendre l’algorithme de calcul des chemins possibles utilisable, et j’ai trouvé un raisonnement qui permet ensuite de trouver le nombre total de chemins auquel appartient un paragraphe, du moment qu’on le sait pour une portion bien choisie du graphe (c’est là que les nœuds interviennent).
Donc je vais pouvoir calculer des indices précis, moyennant un automatisme un peu moins grand que prévu, mais c'est mieux que l'inverse.
[Image: litteraction5.png]Littéraction.fr
Le site de livres-jeux dont VOUS êtes l'auteur !
Répondre
#59
Bien joué !
Répondre
#60
J'ai trouvé une technique permettant de calculer la taille du chemin le plus court sans utiliser le trop coûteux en temps algorithme de Dijstra (en utilisant les puissances de matrice d'adjacence et l'exponentiation rapide).
L'indice taille du chemin le plus court / nombre de paragraphes pourrait servir à caractériser les AVH pour lesquelles je ne peux calculer l'indice proposé par Jehan. Mais n'y a-t-il pas de contre-exemple?
[Image: litteraction5.png]Littéraction.fr
Le site de livres-jeux dont VOUS êtes l'auteur !
Répondre




Utilisateur(s) parcourant ce sujet : 10 visiteur(s)