Monsieur Vic, voici mes réponses.
Je pars du principe que Monsieur Maladroit est l'avatar de Salla (jeteur de dés relativement chanceux) et Monsieur Rapide celui de Lyzi (joueur le plus malchanceux que j'ai pu voir). Je simule cela en supposant que l'un des deux dés de Monsieur Maladroit fait toujours 6, et un de ceux de Monsieur Rapide toujours 1.
Dans ce genre de cas, il y dorénavant une égalité parfaite entre les deux messires en terme de chance de toucher (base de 7+6=12+1 partout). Monsieur Maladroit gagne donc dans la plupart du temps, car il est bien plus résistant.
On en déduit donc que même avec la différence d'habileté maximale, il est possible, même si très peu probable pour un H7 de triompher d'un H12.
Pour le plaisir, faisons tout de même le calcul de la question 6 dans le cas où les deux joueurs sont normalement chanceux :
Je pars du principe que Monsieur Maladroit est l'avatar de Salla (jeteur de dés relativement chanceux) et Monsieur Rapide celui de Lyzi (joueur le plus malchanceux que j'ai pu voir). Je simule cela en supposant que l'un des deux dés de Monsieur Maladroit fait toujours 6, et un de ceux de Monsieur Rapide toujours 1.
Dans ce genre de cas, il y dorénavant une égalité parfaite entre les deux messires en terme de chance de toucher (base de 7+6=12+1 partout). Monsieur Maladroit gagne donc dans la plupart du temps, car il est bien plus résistant.
On en déduit donc que même avec la différence d'habileté maximale, il est possible, même si très peu probable pour un H7 de triompher d'un H12.
Pour le plaisir, faisons tout de même le calcul de la question 6 dans le cas où les deux joueurs sont normalement chanceux :