Calcul d'indices de non-linéarité de livres-jeux
#41
En fait je me rends compte que les algorithmes pour calculer les chemins possibles ne marchent que pour un petit nombre de paragraphes... Vais essayer quand même, mais bon, y'a pas beaucoup d'AVH qui font 30 ou 40 paragraphes... Je vais vérifier par moi-même ce qui se raconte mais ça fait peur.

Sinon je pense qu'utiliser le nombre total de liaisons (facile à déterminer) pourrait servir d'alternative pour les grosses AVH. Après faudrait trouver une relation (une inégalité) entre nombre total de liaisons et nombre total de chemins possibles (et nombre total de paragraphes).

Du genre nombre total de chemins possibles <= (1/2)*nombre total de liaisons
(constaté sur de petits exemples)
Il faudrait trouver une deuxième inégalité (si celle-ci est vraie) et on pourrait encadrer le nombre total de chemins possibles grâce au nombre total de liaisons...
Ensuite, en divisant par le nombre de paragraphes les deux extrema du nombre de chemins possibles, on pourrait créer des indices de linéarité sous forme de fourchette, d'intervalle, et si les intervalles de deux AVH sont disjoints, on peut conclure. L'idée me plaît assez, elle est honnête, et accepte le fait qu'on ne puisse pas calculer un indice avec précision sans pour autant baisser les bras ou faire des approximations éhontées (faire la moyenne des extrema par exemple).

J'en appelle à l'aide de tous les matheux du forum pour ces idées (comment trouver ces inégalités et les démontrer) !
Après avoir réfléchi, j'ai ces résultats:

2 <= Nombre de chemins possibles <= Nombre de paragraphes - 1

(note: on exclue le cas où les paragraphes seraient à la queue le leue, et on considère qu'un chemin ne peut passer deux fois par le même paragraphe)
En fait la méthode ce serait de tracer les graphes suivants:

Nombre de liaisons en abscisse, Nombre de chemins possibles en ordonnée, Nombre de paragraphes fixés
Je l'ai fait, résultat ci-dessus.

Nombre de paragraphes en abscisses, Nombre de chemins possibles en ordonnée, Nombre de liaisons fixé
Et on aura une deuxième inégalité... large, sans doute.
En fait non, ma première inégalité est fausse, je n'ai pas fait de cas assez complexes... ça s'annonce mal tout ça... ça doit être possible de trouver une loi, mais les égalités seront trop larges... va peut-être falloir que je revoie mes vieux indices.
[Image: litteraction5.png]Littéraction.fr
Le site de livres-jeux dont VOUS êtes l'auteur !
Répondre


Messages dans ce sujet
RE: Calcul d'indices de non-linéarité de livres-jeux - par Alendir - 14/02/2010, 23:40



Utilisateur(s) parcourant ce sujet : 9 visiteur(s)